

محاضرات المرحلةّ الاولى لمادة (المناسة الالكترونية
| عاد|A
د.سيعيد سلمان كمون

المحاضرة الثالث4

The Diode

الثنائي

Electronic Devices and Circuit Theory
Eleventh Edition
Robert L. Boylestad and Louis Nashelsky

Diode Parameters

1. Bulk resistance $\boldsymbol{r}_{\boldsymbol{B}}=\left(\boldsymbol{V}_{\boldsymbol{F}}-\boldsymbol{V}_{\boldsymbol{B}}\right) / \boldsymbol{I}_{F}$
2. It is the sum of the resistance values of the \mathbf{P}-and \mathbf{N}-type semiconductor materials of which the diode is made of.Usually, it is very small. It is given by
$r_{B}=\left(V_{F}-V_{B}\right) / I_{F}$
3. Junction resistance $\quad\left(\boldsymbol{r}_{j}\right)=\left(\mathrm{V}_{\mathrm{T}} / \boldsymbol{I}_{\boldsymbol{F}}\right)$

Its value for forward-biased junction depends on the magnitude of forward $d \boldsymbol{d}$ current.

$$
\begin{aligned}
r_{j} & =25(\mathrm{mV}) / I_{F}(\mathrm{~mA}) & & - \text { for } \mathrm{Ge} \\
& =50(\mathrm{mV}) / I_{F}(\mathrm{~mA}) & & - \text { for } \mathrm{Si}
\end{aligned}
$$

Obviously, it is a variable resistance.
3. Dynamic or ac resistance

$$
r_{a c} \text { or } r_{d}=r_{B}+r_{j}=\left(V_{F}-V_{B}\right) / I_{F}+\eta V_{T} / I_{F}
$$

For large values of forward current, r_{j} is negligible. Hence, $r_{a c}=r_{B^{*}}$. For small values of I_{F}, r_{B} is negligible as compared to r_{j} Hence $r_{a c}=r_{j}$

Tyoes of Diodes and Their Uses

PN Junction

Diodes:

Are used to allow current to flow in one direction while blocking current flow in the opposite difection. The pr junction diode is the typical diode that has been used in the previous circuits.

Schematic Symbol for a PN
Junction Diode

Representative Structure for a PN Junction Diode

Zenser Dioclesj

Are specifically designed to operate under reverse breakolown conditions. These diodes have a very accurate and specific reverse breakdown voltage.

Schematic Symbol for al
Zener Diode

Iypes of Diodes and-Their Uses

Light-Emitting Diodes:

Light-emitting diodes are designed with a very large band-gap so movement of carriers across their depletion region emits photons of light energy. Lower band-gap LEDs (Light-Emitting Diodes) emit infrared radiation, while LEDs with higher band-gap energy emit visible light. Many stop lights are now starting to use LEDs because they are extremely bright and last longer than regular bulbs for a relatively low cost.

The arrows in the LED representation indicate emitted light.

Photodiodes:

While LEDs emit light, Photodiodes are sensitive to received light. They are constructed so their pn junction can be exposed to the outside through a clear window or lens.

In Photovoltaic mode, when the pn junction is exposed to a certain wavelength of light, the diode generates voltage and can be used as an energy source. This type of diode is used in the production of solar power.

Load-Line Analysis

The load line plots all possible combinations of diode current (L) and voltage (V_{D}) for a given circuit. The maximum I_{D} equals E / R, and the maximum V_{D} equals E.

The point where the load line and the characteristic curve intersect is the Qpoint, which identifies I_{D} and V_{D} for a particular diode in a given circuit.

Series Diode Configurations

Forward Bias

Constants

Silicon Diode: $V_{B}=0.7 \mathrm{~V}$ Germanium Diode: $V_{B}=0.3 \mathrm{~V}$

$$
\begin{gathered}
\text { Analysis (for silicon) } \\
V_{D}=0.7 \mathrm{~V}\left(\mathrm{or} V_{B}=E \text { if } E<0.7\right. \\
\mathrm{V}) \\
V_{R}=E-V_{B} \\
I_{D}=I_{R}=I_{T}=V_{R} / R
\end{gathered}
$$

Series Diode Configurations

Reverse Bias

Diodes ideally behave as open circuits

Analysis

$$
\begin{aligned}
& V_{D}=E \\
& V_{R}=0 \mathrm{~V} \\
& I_{D}=0 \mathrm{~A}
\end{aligned}
$$

Parallel Diode Configurations

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{B}}=0.7 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{B} 1}=\mathrm{V}_{\mathrm{B} 2}=\mathrm{V}_{\mathrm{o}}=0.7 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=9.3 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{R}}=\frac{\mathrm{E}-\mathrm{V}_{\mathrm{B}}}{\mathrm{R}}=\frac{10 \mathrm{~V}-.7 \mathrm{~V}}{.33 \mathrm{k} \Omega}=28 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=\frac{28 \mathrm{~mA}}{2}=14 \mathrm{~mA}
\end{aligned}
$$

Peak-to-Peak / Average / RMS

- The peak-to-peak value of a sine wave is the voltage or current from the positive peak to the negative peak.
- The peak-to-peak values are represented as:

$$
\mathrm{V}_{p p} \text { and } \mathrm{I}_{p p}
$$

Where: $\mathrm{V}_{p p}=2 \mathrm{~V}_{p}$ and $\mathrm{I}_{p p}=2 \mathrm{I}_{p}$

- The rms (root mean square) value of a sinusoidal voltage is equal to the dc voltage that produces the same amount of heat in a resistance as does the sinusoidal voltage.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{rms}} & =0.707 \mathrm{~V}_{p} \\
\mathrm{I}_{\mathrm{rms}} & =0.707 \mathrm{I}_{p}
\end{aligned}
$$

THE DC OUTPUT CURRENT OR VOLTAGE IN HWR

average current has to be found out.

$$
\text { Average value }=\frac{\text { Area under the curve over a cycle }}{\text { Base }}=\frac{\int_{0}^{\pi} i d \theta}{2 \pi}
$$

* It may be remembered that the area of one-half cycle of a simusoidal wove is twice the peak value. Thus in this case, peak value is I_{m} and, therefore, area of one-half cycle is $2 I_{\mathrm{m}}$.

$$
I_{a v}=I_{d q}=\frac{2 I_{m}}{2 \pi}=\frac{I_{m}}{\pi}
$$

$$
\begin{aligned}
I_{d c} & =\frac{1}{2 \pi} \int_{0}^{\pi} i d \theta=\frac{1}{2 \pi} \int_{0}^{\pi} \frac{V_{m} \sin \theta}{r_{f}+R_{L}} d \theta \quad \begin{array}{l}
1 / \pi=0.318 \\
2 / \pi=0.636
\end{array} \\
& =\frac{I_{m}}{\pi}
\end{aligned}
$$

So the DC output current or voltage is $0.318 V_{m}$
where $V_{m}=$ the peak AC voltage.
For a half-wave rectified wave, $I_{r m s}=I_{m} / 2$

PIV (PRV)

Because the diode is only forward biased for one-half of the AC cycle, it is also reverse biased for one-half cycle.

It is important that the reverse breakdown voltage rating of the diode be high enough to withstand the peak, reversebiasing AC voltage.

$$
\underline{\text { PIV }>V_{m}}
$$

Where PIV = Peak inverse voltage

$$
V_{m}=\text { Peak AC voltage }
$$

Half-Wave Rectification

The diode conducts only when it is forward biased, therefore only half of the AC cycle passes through the diode to the output

The DC output voltage is $0.318 V_{m}$ where $V_{m}=$ the peak AC voltage.

Half-wave Rectifier

- Note that the frequency stays the same
- Strength of the signal is reduced
- $\operatorname{Vavg}=\mathrm{Vp}(\mathrm{out}) / \pi=0.318 \times \mathrm{Vp}(\mathrm{out})[31.8 \%$ of Vp$]$
- Vp (out) $=\mathrm{Vp}$ (in) -V в
- For Silicon $\mathrm{V}_{\mathrm{B}}=0.7 \mathrm{~V}$

Half-wave Rectifier - Example

- Draw the output signal
- $V p$ (out) $=V p$ (in) -0.7
- $\operatorname{Vavg}=99.3 / \pi$
- What happens to the frequency?
- Peak Inverse Voltage (PIV)
- The peak voltage at which the diode is reverse biased
- In this example PIV = Vp(in) ${ }^{-}$
- Hence, the diode must be

Output: rated for PIV $=100 \mathrm{~V}$

Transformers (Review)

- Transformer: Two inductors coupled together - separated by a dielectric
- When the input magnetic field is changing voltage is induced on the second inductor
- The dot represents the + (voltage direction)
- Applications:
- Step-up/down
- Isolate sources
- Turns ratio (n)
- $\mathrm{n}=$ Sec. turns / Pri. turns $=$ Nsec/ Npri

- \quad Vsec $=n$. Vpri
depending on value of n : step-up or step-down
- Center-tapped transformer
- Voltage on each side is Vsec/2

Half-wave Rectifier - Example

Example:

- Assume that the input is a sinusoidal signal with $\mathrm{Vp}=156 \mathrm{~V}$ \& $\mathrm{T}=2$ msec; assume Nsec:Npri = 1:2
- Draw the signal
- Find turns ratio;
- Find Vsec;
- Find Vout.

$$
n=1 / 2=0.5
$$

$$
\mathrm{Vsec}=\mathrm{n} \times \mathrm{Vpri}=78 \mathrm{~V}
$$

$$
\text { Vout }=\mathrm{Vsec}-0.7=77.3 \mathrm{~V}
$$

Full-wave Rectifier

- Note that the frequency is doubled
- $\operatorname{Vavg}=2 \mathrm{Vp}($ out $) / \pi=0.637 \times \mathrm{Vp}$ (out)

Full-wave Rectifier Circuit

- Center-tapped full-wave rectifier
- Each half has a voltage $=$ Vsec/2
- Only one diode is forward biased at a time
- The voltages at different halves are opposite of each other

Full-wave Rectifier Circuit

- Center-tapped full-wave rectifier
- Each half has a voltage $=\mathrm{Vsec} / 2$
- Only one diode is forward biased at a time
- The voltages at different halves are opposite of each other

Full-wave Rectifier Circuit

- Vout = Vsec /2-0.7
- Peak Inverse Voltage (PIV)
- PIV = (Vsec/2-0.7)- (-Vsec/2) = Vsec - 0.7
- Vout $=$ Vsec/2-0.7

Assuming D2 is reverse-biased \rightarrow
No current through D2

